On the Convergence of QM/MM Energies.

نویسندگان

  • LiHong Hu
  • Pär Söderhjelm
  • Ulf Ryde
چکیده

We have studied the convergence of QM/MM calculations with respect to the size of the QM system. We study a proton transfer between a first-sphere cysteine ligand and a second-sphere histidine group in [Ni,Fe] hydrogenase and use a 446-atom model of the protein, treated purely with QM methods as a reference. We have tested 12 different ways to redistribute charges close to the junctions (to avoid overpolarization of the QM system), but once the junctions are moved away from the active site, there is little need to redistribute the charges. We have tested 13 different variants of QM/MM approaches, including two schemes to correct errors caused by the truncation of the QM system. However, we see little gain from such correction schemes; on the contrary, they are sensitive to the charge-redistribution scheme and may cause large errors if charges are close to the junctions. In fact, the best results were obtained with a mechanical embedding approach that does not employ any correction scheme and ignores polarization. It gives a mean unsigned error for 40 QM systems of different sizes of 7 kJ/mol with a maximum error of 28 kJ/mol. The errors can be significantly decreased if bonds between the QM and MM system (junctions) are moved one residue away from all active-site residues. Then, most QM/MM variants give mean unsigned errors of 5-9 kJ/mol, maximum errors of 16-35 kJ/mol, and only five to seven residues give an error of over 5 kJ/mol. In general, QM/MM calculations converge faster with system size than pure QM calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level

In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in...

متن کامل

A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.

We present a method which uses DFT (quantum, QM) calculations to improve free energies of binding computed with classical force fields (classical, MM). To overcome the incomplete overlap of configurational spaces between MM and QM, we use a hybrid Monte Carlo approach to generate quickly correct ensembles of structures of intermediate states between a MM and a QM/MM description, hence taking in...

متن کامل

Direct validation of the single step classical to quantum free energy perturbation.

The use of the Zwanzig equation in the calculation of single-step perturbations to provide first-principles (ab initio) quantum mechanics (QM) correction terms to molecular mechanics (MM) free energy cycles is well established. A rigorous test of the ability to converge such calculations would be very useful in this context. In this work, we perform a direct assessment of the convergence of the...

متن کامل

Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations.

Lately, there has been great interest in performing free-energy perturbation (FEP) at the combined quantum mechanics and molecular mechanics (QM/MM) level, e.g. for enzyme reactions. Such calculations require extensive sampling of phase space, which typically is prohibitive with density-functional theory or ab initio methods. Therefore, such calculations have mostly been performed with semiempi...

متن کامل

Selection and Validation of Charge and Lennard-Jones Parameters for QM/MM Simulations of Hydrocarbon Interactions with Zeolites.

Quantum mechanics/molecular mechanics (QM/MM) models are an appealing method for performing zeolite simulations. In QM/MM, a small cluster chosen to encompass the active center is described by QM, while the rest of the zeolite is described by MM. In the present study, we demonstrate that the charges and Lennard-Jones parameters on Si and O must be chosen properly for QM/MM calculations of adsor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2011